Loss Functions for Loss Estimation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

BAYES ESTIMATION USING A LINEX LOSS FUNCTION

This paper considers estimation of normal mean ? when the variance is unknown, using the LINEX loss function. The unique Bayes estimate of ? is obtained when the precision parameter has an Inverse Gaussian prior density

متن کامل

Loss Functions

Vapnik described the “three main learning problems” of pattern recognition, regression estimation and density estimation. These are defined in terms of the loss functions used to evaluate performance (0-1 loss, squared loss and log loss respectively). But there are many other loss functions one could use. In this chapter I will summarise some recent work by myself and colleagues studying the th...

متن کامل

Loss reserving using loss aversion functions

This article discusses the determination of risk capital based on “aversion” functions. Aversion functions weigh different outcomes according to perceived severity. Many practical and popular risk measures are usefully viewed in terms of aversion functions including those arising from distortion operators and risk margin loadings. The approach of this paper builds on, unifies,and extends existi...

متن کامل

Loss Functions for Multiset Prediction

We study the problem of multiset prediction. The goal of multiset prediction is to train a predictor that maps an input to a multiset consisting of multiple items. Unlike existing problems in supervised learning, such as classification, ranking and sequence generation, there is no known order among items in a target multiset, and each item in the multiset may appear more than once, making this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1988

ISSN: 0090-5364

DOI: 10.1214/aos/1176350960